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ON THE STABILITY OF A THREE-LAYERED PLATE

V. N. MOSKALENKO

In-t. mekhaniki AN SSSR, Leningradskii prospekt, d. 7, Moscow

Abstract—An exact solution is presented for the three-dimensional stability problem of a thick three-layered
plate with Navier boundary conditions (‘simply supported” edges). The linearized equations of nonlinear theory
of elasticity are considered. The conditions of the absence of slip between layers are used. For several numerical
examples a comparison is made for exact solution and some approximate solutions.

1

THE stability problem for elastic body in the absence of body forces is essentially [1, 2]
the eigenvalue and eigenfunction boundary problem for the equations of nonlinear
elasticity theory, which are linearized for perturbations.

These equations and boundary conditions are as follows:
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The subscript "0’ corresponds to the unperturbed stress field. The latter, by assumption,
may be determined from the equations of linear elasticity theory. The primes correspond
to the perturbations,
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Using Hooke’s law for perturbations we obtain a set of equations

(i+u)£<%%+%g+%t/> +uAu'+ Lov' = 0,
(A+ u)%(%’%%% %t) 4 pAw + Loy = 0, (3)
(A+u)%(%+%+%—j) +uAw' + L°w' = 0.

2

Consider stability of equilibrium of rectangular elastic plate which is composed of
three isotropic layers. The plate is assumed to be symmetric with respect to the z-plane
(Fig. 1), elastic coefficients 4,, u, identical for two external layers and Poisson ratio v
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identical for all layers. Moreover, we assume the loads p, p, and ¢, q; to be connected
by the relationship:
P_Pi 4_14
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Here A, u are Lamé elastic constants for the internal layer.
Then unperturbed stress field is determined by equations

o o __ .0 _ .0 __
oy = —p, U; = —4 O = Ty = Tz = Ty = 0, (5)
for the internal layer, and
o o o _,0 _ _O0 __
0y = —Pi1s o, = —{q1, Op = Tyy = Ty, = Ty, = 0. (6)

for the external layers.
The boundary conditions on planes x = 0, x = a, y = 0, y = b are (here and in the
following the primes are dropped)

9
oot o0 u =0 w=0. (7)
on
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Here o, is normal stress, u, is normal displacement, u, is tangential displacement in
plane xy. The boundary conditions (7) correspond to the Navier ones, which are used in
the theory of thin plates.
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The conditions of the absence of slip between layers are
Ul=h-0 = Uz=n+0 Vseh-0= C W],ohoo = W, —pro- @)
Equating stress components on contact surface, we obtain
Sxi::h—o = Sx|z=h+0 ; Sy|z=h~0 = Sy’z=h+0 5 Sz|z=h—0 = Sz|z=h+0' ©
Using relations (9) and (2) we obtain conditions for stress components
Txzlz=h—0 = szz=h+0; Tyzlz=h—0 = Tyz|z=h+0; lez=h-0 = Gz|z=h+0' (10)
Equating stresses on the external surfaces to the zero, we obtain
‘Exz z=h+H = 0’ Tyz‘z=h+H = Oa O-z[z=h+H = 0 (11)

3

We shall look for a solution of equations (3) in the form

u = F(z)cos k,xsink,y, v = O(z) sin k,x cos k,y, w = Y(z)sin k,x sin k,y, (12)

k=200 =»'% My =1.2,..)

Substituting relations (12) in (3), we obtain a set of equations for functions F, ®, ¥
UF" —[(A+ k3 +(1 —o)uk? \F — (A + )k (k@ + (£ + wk, ¥ = 0,
— (A4 Wk kyF + p®@" —[(A+ k3 + (1 — o)k [® + (A + )k, ¥ = 0, (13)

— (2t 1k F = (o k@ + (2 + 200" — (1 — )k ®¥ = 0,

pk3 +qk3
<k2 =ki+kd o= # .
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Roots of the corresponding characteristic equation are given by
T2 = it Y34 = t 1, Vs = i3

Here

F=d=R-a, d=R0-m r=

The general solution of equations (13) is
F(Z) = {~k2a1 +k1a2) Sll “12+k1a3 Sh 5’32'}"( “"kzbl +k1b2) Ch t‘12+k1b3 Chl‘az,

®(z) = (kya, +k,a,)sh e, z+kyas sheyz+(k by +kyb,) ch iz +kybs ch ¢z, (14

2 .k . . .
“P(Z) = ;T“az Ch 5’12‘*“‘3(13 Ch 532‘*‘7’)2 Sh ¢12+ ‘3b3 Sh 532.
L 1

Here a,_3, b,_; are integration constants.
In order to satisfy conditions (10) and (11), we must determine components 1, T,,, 6,
of stress tensor of perturbations:

. k2 +¢3
Tey = I (——kza‘¢1+k1 p a2> ch¢yz+2kfya;5chesz

1

k? 42 . . . .
~b, | she,z+2k £3b, sh €320 cos kyx sin k,y,

+ (—kszz;-;-kl

1

k? 442
T, {(k ¢a,+k, j az) ch ¢,z +2k,f5a, cheyz

1

k2+ Z

(kltlb, +k, bz) sh ¢,z+2k,£3by sh f},z} sin k,x cos k,y,

1

0, = u{2k*a, sh,z+(k* +¢3)a, sh £32+2k*b, ch £,2+ (k> +¢2)b, ch 52} sin k,x sin k, .

Solutions for the external layers have similar form. One must substitute u,, A4;, B,
for the upper layer, and pu,, 4}, B; for the lower layer instead of u, 4;, b;.

4
It follows from the symmetry of the plate with respect to the z-plane, and from the
symmetry of conditions on the contact surfaces and the edge conditions, that two modes
of buckling are possible. The first mode is antisymmetric (buckling with bending), the
second one corresponds to buckling, which is symmetric with respect to the z-plane.
We obtain for antisymmetric modes

by=0, Aj=4, B=B (i=123) (13)

After satisfying equations (8), {10) and (11), we obtain nine equations for nine unknown
constants a;, 4;, B;. Critical values of load parameter « correspond to zeros of determinant
of this set of equations. The determinant may be represented as the product of two terms.
In this connection we consider two cases.

(1} First factor is equal to zero:

&, Cy+tis,S; = 0. (16)
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In this case we have
a, =a, =0, A, = A3 =0, B, =B;=0.
The w-component vector disappears.
(2) Second factor is equal to zero:

EdP[({C (S5 —4138,Cy)eic3 + (138, Cy —413C S3)tis 53]+ E2aP((Peyss —Atis cs)

+[CHC,C5— 1) = 43138, 8312 — £ e 55 — 41 — &) tis c5] 1))
+[{%8,8,—4(C,C;— DIIE —28) 35105 — (1= &)%cys3] = 0.
Here
_H _ _ 2 _ sheh
é—ﬂl’ ti_k, C_1+t ’ Sl ti )
. h e H .
¢; = che¢h, S,‘=S tl , C;=ch¢H.

i

In this case the constants a,, A, B, must be set equal to zero.
For symmetric deformation we have relations

a,=0, A,=-A, B=B (i=123) , (18)

Satisfying boundary conditions (8), (10) and (11) and equating to zero the determinant of
the resulting system, we obtain the equation for critical value of loading parameter.
Just as before the determinant may be represented as the product of two terms, and one
must consider two cases.

(1) First factor is equal to zero:

ECys;+S,¢q = 0. (19)
Then we have
b, =b; =0, A, = A, =0, B, = B; =0. (20)

For such a type of strain field the displacement in the z-direction is absent.
(2) Equating the second factor to zero yields:

Ea?[135,55(02C 1S3 —413C38 )+ ¢163(02SC3 —415C (S y))+ E2a®({%s,05 —dtic,55)
+[(HCC3— 1) — 412138, 85112 — E0)*sy¢5 — 41 — &)*t5cy 53]
+[28,8S;—4(C,C3 - D] —-2¢ 2t3cys3— (1= 8)%syc3] = 0. (21

Note, that of all critical values of « only those which are small compared with unity
are physically possible. This is due to the fact that in the original strain field the strains are
of the order p/u or g/u (i.e. @), whereas the original equations are based on the assumption
that these strains are small.

It must be noted also, that assumption (4) and the assumption about constant value
of Poisson’s ratio may be removed. This removal will lead only to different expressions
for the roots of characteristic equations for internal and external layers; equations (18)
and (21) would be slightly more complex.
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5

Consider antisymmetric (with bending) buckling of a thick square three-layered
plate with a soft internal layer (@ = b = 10(h+ H), H = O:-1(h+ H), v = 0-3, & = 0-001).
An approximate approach [3,4] gives a = 0-00492. From equation (17) we obtain
o = 0-00497.

For the plate with a rigid internal layer (a = b = 10(h+H), H = 0-5(h+ H), v = 0-3,
¢ = 0-1) an approximate theory [5] gives the value a = 00599, while the exact value is
found to be o = 0-0631.
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The exact values of « for symmetric buckling are given in Fig. 3 vs. ratio ‘u’ of plate
half-thickness (h+ H) to length and half-wave of buckling

a/m, = b/m, (v = 04, & = 0:000119).

The minimum value is o = 0:00330. Approximate approaches [3,4] yield « = 0-00273.
Mushtari’s approximate theory [6] yields « = 0-00320. The critical value of « based on
the assumption that the external layers are plates governed by the Kirchhoff-Love
theory and the internal layer is an elastic continuum media (parametric terms are not
taken into account) [6] is found to be a = 0-00315.
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Zusammenfassung—Fiir eine dicke, dreischichtige Platte mit Navier’schen Randbedingungen (‘einfach gestiitzte’
Kanten) wird eine genaue Losung des dreidimensionalen Stabilititsproblems angegeben. Die linearisierten
Gleichungen der nichtlinearen Elastizitdtstheorie werden in Betracht gezogen. Verwendet werden die bei der
Abwesenheit von Zwischenschichtschlupf bestehenden Bedingungen. Anhand mehrerer Zahlenbeispiele wird
die genaue Losung mit einigen Anniherungsliésungen verglichen.

A6crpaxT—IIpennaraercs TOYHOE PELLEHUE B TPEXMEPHOM NOCTAHOBKE 3a0a4M 00 yCTOMYMBOCTH TOJICTOM
TPeXCIIOMHOM IIMTHI IPH I'PaHHYHbIX ycnoBudax Hasee (‘‘oneprhiii’’ kpait). PaccMaTpuBarOTCS JIMHEAPH3HPO-
BaHHBIE YDABHEHHS HeJMHeHHOH Teopuu ynpyroct. Micmone3yroTcs YCIOBHA OTCYTCTBHA CABHra MEXAY
cinoAiMHA. Ha HECKONIBKHMX YMCJIEHHBIX NPUMEPaX NAETCH COMOCTABIECHHE TOYHOrQ PEIUEHHMS U HEKOTOPHIX
NPHONHXEHHBIX PELLICHMUI.



